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Abstract-Laminar incompressible flow in straight ducts of eccentric annular cross section is analyzed. 
Numerical methods are used to solve an approximate hydrodynamic model, which was developed from the 
bipolar coordinate representation of the Navier-Stokes equations. Solutions obtained for the proposed 
model compare favorably with those of two alternative models and with published solutions for the 

concentric annulus and the circular tube. Results are presented for five different geometries. 

NOMENCLATURE 

location of the positive pole of the bipolar 

coordinate system [m] ; 
hydraulic diameter 2(r,, - ri,)[m] ; 
absolute eccentricity, or center-to-center 
distance [m] ; 
coordinate scale factor, defined by equa- 

tion (11) [ml; 
dimensionless h, h/D,,, 

thermodynamic pressure [Pa] ; 
dimensionless p, (p-p,)/(pG*); 

pressure defect, defined by equation (37); 
radius [m] ; 
radius of the circle formed by the curve 

i=i* [ml; 
Reynolds number, pWD,,/p ; 

time [s] ; 
( component of velocity [m/s] ; 
dimensionless u, puDJp ; 

q component of velocity [m/s] ; 
dimensionless v, pvD,/p ; 

velocity vector [m/s] ; 
axial component of velocity [m/s] ; 
average w (volume rate of flow per unit 

area) [m/s] ; 
dimensionless w, w/W; 
Cartesian coordinates in the transverse 
plane [ml; 
axial coordinate [m] ; 
dimensionless z, (z - z,)/(D,Re). 

Greek symbols 

Y. radius ratio, riw/row ; 
AZ, dimensionless axial step size ; 
8 relative eccentricity, e/(r, -riw); 

*Research performed at Carnegie-Mellon University, 
Pittsburgh, Pennsylvania. 

tDeceased. 

bipolar coordinates in the annular cross- 
section ; 
cylindrical surface of constant ; along 
which the two transverse flows travelling 
away from the two walls are assumed to 
meet ; 
coefficient of viscosity [Pa.s] ; 
density [kg/m3]. 

Subscripts 

e, entrance (inlet to the duct); 

i, j, indices which together denote points of the 
finite difference grid (i corresponds to i and 

j to v); 
iw, inner wall ; 
ow, outer wall ; 
max, maximum. 

1. INTRODUCTION 

THE FLOW entering a duct from a reservoir undergoes a 
development whereby the relatively flat inlet velocity 
profile gradually transforms into a fully developed 
profile. Flow developments which occur in the en- 
trance region of ducts have been widely studied 
because they increase the duct pressure loss and alter 
the rate of heat transfer between the fluid and the duct 
wall. Lundgren et al. [l] devised a means of determin- 
ing the pressure loss due to the entrance region in ducts 
of arbitrary cross-section. Sparrow and Lin [2], Mura- 

kawa [3], Heaton et al. [4], and Shumway and 
McEligot [S] analyzed the hydrodynamic entrance 
region of concentric annuli. The axial momentum 
equation for fully developed flow in eccentric annuli 
was solved by Redberger and Charles [6] with a 
numerical technique, and by Snyder and Goldstein [7] 
with a separation of variables technique. Hence, 
developing flow in concentric annuli and fully de- 
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veloped flow in eccentric annuli have been extensive- 
ly studied. The only known solutions of the 
hydrodynamic entrance region problem for eccentric 
annuli are the finite difference solution of Feldman 
[8], which is the basis of this paper, and Wilson [9]. In 
the latter a linearized version of the governing equa- 
tions is solved and the analysis leads to a 2-dim. 
eigenvalue problem. Although Galerkin’s method is 
applied to this eigenvalue problem and shown to 
converge, the mathematical expressions containing the 

solution are not evaluated. 

L MATHEMATICAL MODEL 

The fluid is assumed to be incompressible, laminar 

and Newtonian, and to have constant properties. Body 
forces are neglected and only forced convection is 
considered. The vector form of the governing equa- 
tions is: 

continuity equation 

v.v=o, 

momentum equation 

(1) 

pg = -vp + pv2v, 

where V is velocity, t is time, p is density, p is 
thermodynamic pressure, and /A is the coefficient of 
viscosity. 

In the analysis of flow in eccentric annuli, it is 
convenient to represent the governing equations in the 

bipolar coordinate system. The bipolar coordinates 

(i, ~7) are related to the Cartesian coordinates (x, y) by 
the following two equations: 

tji+c-coth<)i=csch’; 

for - IYI < [ < XJ, (3) 

Figure 1 shows curves of constant < and constant ?I 
plotted as functions of x and y. In the figure the positive 

pole is shown to be located on the y/a axis at y = a. The 
constant < curves form a family of eccentric circles 
which are orthogonal to the family of constant ‘1 
curves. The constant [ curves encircle the pole and the 
constant r) curves are circles which intersect it. 

The geometry of any eccentric annulus can be 
characterized by the dimensionless pair of radius ratio, 
y, and relative eccentricity, E, which are given by: 

.+K, 
” 

“xv 

e 
I:=- 

r ow - riw 
(6) 

06 

x/o 0 6 

04 

02 

0 
0 04 08 12 16 20 24 

Y/a 

FIG. 1. Bipolar coordinate curves for the region 
(1.0 S i 2 2.0, 0 5 q I n). 

where the subscriptsiw and ow correspond to the inner 

and outer wall of the annulus, respectively, r is the wall 
radius, and e is the absolute eccentricity, or center-to- 
center distance, of the annulus. From equation (3) one 
observes that each constant [ curve is of radius csch [ 
and has its center located on the x/a axis at y/a = 

coth &‘. Therefore, riw, r,,, and e of equations (5) and 

(6) can be replaced by a . (csch iiw), a . (csch i,,), and 

a . (coth c,, - coth ii,), respectively. With the aid of a 
few hyperbolic function identities, one can express 

equations (5) and (6) solely in terms of y, E, cash &,, and 
cash &,. When the resultant pair of simultaneous 

equations is solved, the following two expressions, 
which can also be found in [7], are obtained. Hence 

cash <,, = 
y(1 - e2) + (1 + E2) 

2f. 1 
(7) 

cash ii, = 
‘u’(ls-E2) + (l-E2) 

2ey 
(8) 

Values of F: and y, which by definition are both 

between 0 and 1.0, can be used in the above two 
equations to find values of &,, and ii,. Planar sym- 
metry enables us to consider only the half of the 
annulus which is between n = 0 and q = 7-c. Hence the 

region of interest is ({,, 5 < $ ii,, 0 <: q 5 n). 
The general orthogonal curvilinear coordinate ex- 

pressions for the vector operators of equations (1) and 
(2) along the necessary bipolar coordinate scale factors 
can be found in [lo]. These enable the continuity 
equation and the three vector components of the 
momentum equation to be represented in the bipolar 
coordinate system. Unfortunately, no practical means 
appears to exist which would allow one to solve the 
resultant four simultaneous partial differential equa- 
tions in their entirety. Therefore, these equations will 
be used in the development of an approximate model. 

In the model development, knowledge of the relative 
magnitudes of the individual terms of the four scalar 
equations will enable one to judge the relative impor- 
tance of each term. The values of the terms vary 
throughout the entrance region and cannot be known 
on a local basis unless the solution of the equations is 
known. One can, however, determine in a global sense 
relative magnitudes of the terms which represent 
averages taken over the entire entrance region. If we 
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assume that the global magnitude of a term is a 

measure of the impact it will have on the solution, then 

we can assess the degree of approximation involved in 
eliminating that term. This order of magnitude anal- 

ysis can be found in [8] where it is assumed that the 
ratio of the length of the entrance region to the duct 
hydraulic diameter is much greater than 1. For this 
ratio to be at least 10, for example, the entrance length 
values presented in Table 1 of Section 5 indicate that 
the minimum Reynolds number would typically be 
between 30 and 1000, depending upon annular ge- 

ometry. Since, as indicated below, the model ignores 
transverse pressure gradients and assumes a uniform 
inlet velocity profile, the minimum acceptable Rey- 
nolds number is expected to be a few hundred rather 
than 30 and the solution is not expected to be accurate 
extremely close to the duct inlet. The order of magni- 

tude analysis leaves the continuity equation unaltered 
and causes a reduced form of the axial momentum 
equation to replace all three scalar components. The 

continuity equation and the reduced momentum equa- 
tion, expressed in bipolar coordinates, are: 

g (hu) + ; (hu) + 2 (h2w) = 0, (9) 

where 

h= 
a 

cash [ - cos q’ 
(11) 

z is the axial coordinate, u, u and w are the c, q and z 

components of velocity, and a is the location of the 
pole (refer to Fig. 1). The boundary conditions for 
equations (9) and (10) are that all three components of 
velocity, u, v and w, are zero at [ = [,, and at [ = ii,. 

While u, u and w in equations (9) and (10) are 
functions of [, q and z, the pressure gradient dp/dz is a 

total derivative which is a function of only z. Since 
there are three unknown components of velocity in 
addition to the pressure gradient, equations (9) and 
(10) do not form a complete mathematical model. 
Carlson and Hornbeck [ 1 l] faced a similar situation in 
the solution of the hydrodynamic entrance region of a 
duct of square cross-section. They developed a re- 
lationship between the two transverse velocity com- 
ponents in the square cross-section by assuming that 
all of the transverse flow was directed along straight 
lines which cross the center of the duct. Brief con- 
sideration of the mechanism which produces the 
transverse flow in an annular duct will provide sub- 
stantial information about its path. When a flow with a 
uniform axial profile and no transverse components 

enters a circular tube, the flow near the wall is retarded 
and transverse flow is sent radially and symmetrically 

toward the center. Similarly, external axial flow along 

FIG. 2. Transverse flow description. 

the lateral surface of a cylinder produces radial 

symmetric transverse flow away from the center of the 
cylinder. If the cylinder is placed inside the tube to form 
a concentric annulus, the two transverse flows will 
meet and go to zero along a surface of revolution. If we 
think in terms of two boundary layers simultaneously 
forming along the two walls, then this surface must 
fall between the two boundary layers and a reasonable 
approximation to it is the cylindrical surface of 
constant radius which intersects the ridge of maximum 
axial velocities for fully developed flow. At axial 
locations far from the duct inlet this representation is 
exact and near the duct inlet it is reasonable. 

In the eccentric case, a similar mechanism prevails. 
Figure 2 depicts the expected paths of the transverse 
flow. If the transverse flow of either surface could 
behave independently of the other surface, it would 
follow the radial lines emanating from its surface. The 
presence of the other surface, however, causes the 

transverse flows of each surface to bend away from 
their respective radial lines. As the two flows approach 
each other, they travel along paths which tend to 
transfer flow from the narrower side of the annulus to 
the wider side. The surface along which the two 
transverse flows merge, by similar arguments to those 
proposed for the concentric case, can be approximated 

by the cylindrical surface which intersects the ridge of 
maximum axial velocity for fully developed flow. For 
the sake of mathematical simplicity, this surface is 
approximated by one of constant radius, r*. In reality, 
as the absolute eccentricity increases, the curve in 
question deviates significantly from one of constant 
radius and tends to become egg-shaped. Fortunately, 
as demonstrated in Section 4, the solution is only very 
mildly sensitive to the choice of transverse flow 
prescription. 

For a concentric annulus the classical closed-form 
representation of r* is row J(1 -r2)/ln(l/y2). This 
representation is also used to approximate r* for all 
but the most eccentric geometry (t. = 0.9, y = 0.1) 
considered in the present analysis. The use of the above 

r* representation in this extreme case causes the circle 
formed by the r* curve not to include the center of the 
curve defining the outer wall. This causes the radial 
lines emanating from the inner and outer walls not to 
intersect in the manner depicted in Fig. 2 and hence the 
model breaks down. Therefore, in this case, r* is 
arbitrarily taken to be half of the radius of the outer 
wall. 
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Based on the above description and assumptions, a 
mathematical relationship for the transverse velocity 
ratio. C/U, was developed and is 

For < # i* 

I tz - t, 
-=FrTy, (12) 
U 2 I 

r 

csch j,, - csch i* __..._ 
csch < - csch ;* 

for { <: c*, 

F=( (13) 

csch tiw - csch ;* ___. 
csch i” - csch ;* 

for i > i*, 

t, = ____-- H sinh < 
-3 

g (sinh ;,,) (cot ye) - H sin rI 
1’ 

(14) 

H sin ? 

0.5 
for i < i*, 

Hsinh: - -coshi 1-7 -ow 

tl = (151 

H sin 9 

0.5 -.-. 
for 5 > 5*, 

H sinh _ - -cash ii, 
1-i 

where i* is the i curve of radius r* and H is the 
dimensionless form of h and given by 

H= 
0.5 sinh i,, 

(1 - g)(cosh jTcosl?) (16) 

For < = <* Db = 2(r, - ri,) = 2u( 1 - 7) csch ;,,. (25) 

u = 0. (17) 

Equations (9)-(17) together with the zero-velocity 

p”D, 
Re=-. (261 

P 

boundary conditions and a uniform inlet velocity 
profile provide a complete mathematical model of the 
hydrodynamic entrance region. As is well documented 
by Hornbeck [12], however, several hydrodynamic 
entrance region solutions including those for parallel 
plates [13], a circular tube [14], and a square duct 
[l I], have also used the integral form of the continuity 
equation. The models in these solutions are similar to 
the current one in that they all contain the differential 
form of the continuity equation, a reduced axial 
momentum equation in which the pressure gradient is 
a total derivative, and, in the square duct case, a 
transverse flow model. Of course, since the integral 
form of the continuity equation can be obtained by 
applying the divergence theorem to the differential 
form. the integral form is mathematically redundant. 
In the finite difference solution, however, this re- 
dundancy is avoided because the differential form is 
not represented in all nodal regions ciose to the duct 
walls. The bipolar coordinate form of the integral 
continuity equation is 

With these definitions one may express the con- 
tinuity equation. equation (9) and the axial momen- 
tum equation, equation (lo), respectively, as 

(28) 

In equation (12), I.@ equals V/U and all other variables 
in equations (I 2)-( 16) are already dimensionless. Thus 
equations (13)-( 16) remain unchanged and equations 
(12) and (17) become 

fJ 
- = F $+ for < # ;*. 
u z 1 

(29) 

cJ=o for ; = ;*. (30) 

2 u2 (1 - i’z)wcsch~ <,, = 
n CL, 

11 
wh’d< drj, (18) 

0 ’ >,‘.. 

where ~ii is the average axial velocity taken as the 
volume rate of flow per unit of cross-sectional area. 
Equation (18) is particularly useful because it repre- 
sents a physical constraint which does not include the 
transverse velocity components. 

3. METHOD OF SOLUTION 

The equations of the model are expressed in dimen- 
sionless form with u, L‘, w. p. 2 and Ir, respectively 
represented by : 

(19) 

(20) 

z - 3, 
Z=- 

D,Re’ 
(23) 

H = “, 
h 

where the subscript e of zc and pe corresponds to the 
entrance of the duct, and D, and Re are the hydraulic 
diameter and the Reynolds number, respectively, and 
are given by 
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The dimensionless form of the boundary conditions is 
that at [ = i,, and at < = iiwt U = V = W = 0. 
Equations (23) and (21) provide that at the duct inlet 2 
= 0 and W = 1 at all interior values of {. The 
dimensionless representation of the integral form of 
the continuity equation, equation (18), is : 

WN’d< dn = 1. (31) 

A finite difference solution to the model is ob- 
tained from a numericai marching technique in 
which the hydrodynamic entrance region is sectioned 
into a series of parallel planes which are perpendicular 
to the Z axis. At the inlet, the flow is taken to have a 
uniform axial profile and no transverse velocity com- 
ponents. The hydrodynamic model is solved at the first 
plane beyond the inlet independently of all succeeding 
planes. The solution for the second plane depends only 
upon that for the first and, similarly, the solution for 
the k + 1 plane depends only upon that for its 
immediate predecessor, the k plane. Thus, the entire 
hydrodynamic entrance region is solved by solving one 
plane at a time in succession. In each plane, the region 
defined by (C,, I i I i& 0 I r~ 5 n) is sectioned by 
sets of constant < curves (with index i) and constant q 
curves (with index j) to form a finite difference grid 
covering half of the symmetric annular cross section. 
This grid is chosen to be sufficiently fine to enable 
solutions with acceptably small truncation errors to be 
produced without requiring excessive amounts of 
computing time and storage. The [ interval from &,_, to 
[* and the one from ciW to 5” are each divided into the 
16 proportions which, starting from either wall, are 
0.01,0.01,0.02,0.02, 0.02, 0.02,0.05,0.05,0.1,0.1, 0.1, 
0.1,0.1,0.1,0.1,0.1.Thustheigridsizeadjacenttothe 
outer wall is 0.01 . ([* - &,,) and the one adjacent to 
the inner wall is 0.01 . (iiw - i*). The very small grid 
spacing at the wails accommodates the steep velocity 
gradients that occur there. The q interval from 0 to n is 
divided into 24 equal segments. Therefore, there are 
775, i.e. (2 x 16 - 1) .(24 + l), interior grid points, 
with indices (i, j), for which values of the three 
components of velocity, Ui,j, Vi,j and Wi,j, are 
required and 25 points on each [ boundary for which 
ail values of ffi j, Vi.j, and W,,j are zero. 

In the finite ‘difference represen~tion of equation 
(28) at the k + 1 plane, all velocity coeflIcients of 
derivatives are evaluated in the k plane, and only the 
derivatives with respect to <and n are expressed in the 
k + 1 plane. A simpIe M-order backward difference, 
which uses values in both planes, is employed to 
approximate the axial derivatives. When equation (28) 
is represented at all 775 interior points of a plane, a 
simultaneous set of 775 equations containing 775 
unknown values of Wi.j and one unknown value of 
dP/dZ are produced. There are an even number of 
equal r~ intervals and all 4 intervals are in pairs of equal 
size. Therefore, Simpson’s l/3 rule can be used to 
approximate the double integral of equation (31) The 
finite difference representation of equation (31) com- 

pletes the set of 776 simultaneous linear equation and 
unknowns. 

A finite difference approximation provided by Allen 
[ 151 for grids of equal spacing and extended in [S] to 
grids of unequal spacing is used to approximate the i 
and q derivatives of equation (28). The general form of 
this finite difference approximation is: 

where the dependent variable S is a function of the 
independent variable 9, I is a constant, and I - 1, I, 
and f + 1 are the indices of three consecutive points of 
increasing value in the (I, finite difference grid. It can be 
shown, with the aid of L’Hdpital’s rule for inde- 
terminate forms, that if i = 0, equation (32) is identical 
to the familiar central-di~erence representation of the 
second derivative which can be obtained from a 2nd- 
order Taylor series approximation. 

If dP/dZ were known, the 775 simultaneous linear 
equations produced at each plane by equation (28) 
could be solved by the method of successive over- 
relaxation (S.O.R.). Since at each plane dP/dZ is 
unknown, approp~ate guesses for all 776 unknowns 
are made and the following algorithm is used. 

1. All 775 W,.;s are updated by performing an 
iteration by the method of S.O.R. on all 775 equations 
produced by equation (28). 

2. All 776 unknowns are updated by dividing each 
by the numerical approximation of the left-hand side 
of equation (3 1). 

3. The above two steps are repeated. 
4. If 

/I!!3 - ft!E\ 
o<\d_z!3 WA< 1 

/dP\ /dP\ ’ (34) 

where the subscripts 1,2 and 3 refer to the latest three 
iterates in order of oldest to newest, then the current 
value of dP/dZ is replaced by 

(35) 

5. The above four steps are repeated until the 
absolute value of the S.O.R. residual of largest magni- 
tude in step 1 is smaller than a specified value. 

Although a uniform profile of W = 1 identically 
satisfies equation (31), it only approximately satisfies 
the numerical representation of equation (31). Hence, 
at the duct inlet W was increased slightly to avoid a 
numerically induced flow discontinuity between the 
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inlet and the first solution plane. This vlrhte of I%’ and 
an arbitrarily chosen negative value of d&d2 were 
used at &e &se solution plane to start the a~~~~thrn. 
At e&t succeeding phone, the algorithm was started 
with the solution of its immediate pred~essot. 

Stap 4 increased the rate of ~onv~~~~nce of the 
dPjd2 iterates, which had been much slower than that 
of the Wij iterates, by about an order of magnitude. 
Equation j35j d step 4 is Aitken% h?? &m?rIs [n&J 
a~~b~~~~~~~ expressed in a form suggested by %Vest- 
f&s [$a. This form is well suited for evahtation by 
~~~~~~~rs which set the quotient in equation (35) to 
zero w&en the divisor is zero, thereby Iea.vtng the latest 
dP/dX unchanged. Criterion (34) was inehtded be- 
cause equation t35) can produce an e~t~~~~~ bad 
iterate of P/d2 when the ma~~tude of the difference 
of successive iterates is not declining. An S.O.R. 
a~~~~~ration parameter in step 1 of I,4 aud a COW 

vrrr~~~cc3 criterion in step 5 of 10w4 were found to 
produce reasonably fast ~on~erg~ce to au accurate 
~~ut~~~ and were ~e~era~~~ used_ 

After a% FFi_ j for a j&me are obtains the ~~rn~~~~ 
a~~r~x~rnat~~~ to Knutson (U)is used in ~~~j~~ct~on 
with equations (291 and (30) to directly evaluate 
witbout iteration at! of the unknown Uiaj and V,+j in 
the plane. First-order backward and forward differ- 
ences ate used almost ~x&~usi~ely in the numerica 
re~r~~~t~~~on of equation f27t 

At ea.& plane dPjd% is used to approximate P and 
the pressure defect, PD. The lst-order backward- 
d~ff~~~~~e repre~n~ti~~ of dP/dZ at the k. + 1 plane 
yields 

where the subscripts k and k + f r&r t;o two suc- 
cessive planes. The pressure defect, UP incrementat 
pressure drop number, at any plane is ~~~~ox~rnated 

by 

computing time ou the Univac 1108 computer at the 
~arnegie-MeI~~~ University ~orn~~tat~on Center, 
were needed to obtam a complete b~dr~~~a~~ 
entrance region salutian. A detailed listing of the 
FORTRAN IV computer programs and additional 
j~~f~rrnat~~n conc~~~~~~ the solution method can be 
f&md in [I?& 

The princcipa3 assurnp~o~ of the h~drod~nam~~ 
model is that the axial velocity and pressure distri- 
butions are only moderately sensitive to the transverse 
flow distribution. lf this assumption is vatid, then other 
transverse flow dis~r~b~t~~n mode&s shaufd produce 
similar resutts. Therefore, two alternative models are 
identified and the results obtained with ail three axe 
compared. 

In the first a~t~~~~t~ model all of the transverse 
flow is assumed to be zllong curves of constant q_ This is 
compatible with the generat boundary tayer devefop- 
me& along the wails and has rhe advantage of being 
~~~~de~~t of&e surface 5 = <‘. along which in the 
proposed madei the transverse Aows from the two 
walls meet. The mathematical repre~~tation of this 
ahsrnate model contains the same continuity and 
momentum equations as tbe proposed model except 
that t” is set to zero The ~~sad~~tage of this a&eruate 
m&e1 is that its lack of a velocity component in the g 
direction is physics@ unrealistic. Smce the axiai 
velocity profile at Lhe inlet is uniform, the q component 
d v&?&y is needed to transfer flow from the nar- 
ruwesst te the widest part of the annular gap so that 
when the Bow is fully developed the ~elodties along the 
ridge d ~~rn~rn axial ~e~~~~~ increase ~noton~ 
ic&fy from one side of the annuiar @p to the other. 

While there are fn~~mental di~~r~~~~~ between the 
t~~sver~ Bow d~~~~~tions of the proposed and first 
alternate models, there are also basic similarities, 
Both models satisfy the differential form of the con- 
tinuity equation and have a tr~sverse Row which 
~~r~~d~~u~ar~~ meets both wafts ~8 the an&us. The 
second alternate model, however, is designed to be 
s~~st~ntia~ly di~er~~~t fram either of the other two 
models. This difference enables the ~usitivify of tht? 
h~dr~dynarnj~ solutions to the choice of transverse 
Wow de~~~~on to be ~~~her assess& fn the s~ond 
alternaie there Is BQ tr~~~er~ flow and the math- 
em~t~~ai ~~~~nt~ti~~ of the model consists of 
equations (3 I) and (ZX) with U and ti set to zero. Since 
this model does not satisfy the differential form of thr? 
continuity equation, it cannot be expected to produce 
results which am as accurate as those of the other two 
models. 

Symmetry requires that ail ofthe transverse Row m a 
eoneentric annulus be along symmetric radial lines, 
Because this is predicted by both the proposed model 
ancf the first alternate model and because we are 
seeking s&dons for eccentric georne~r~e~ the high& 
e@XXttiG geome&y fs = o.g> y = 0. $1 was ehcrsen %I. 
ths mmpatison of the behaviors of the three models, 
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PROPOSED Ei FIRST 
ALTERNATE MOOELS 

FIG. 3. Dimensionless axial pressure gradient (E = 0.9, 
y = 0.1). 

IO 
PO 

PROPOSE0 MODEL 

SECONO ALTERNATE 

FIG. 4. Pressure defect (E = 0.9, y = 0.1). 

FIRST ALTERNAT 
I8 

PROPOSED MODEL 

14 SECOND ALTERNATE 

FIG. 5. Maximum dimensionless axial velocity (E = 0.9, 
y = 0.1). 

This geometry enables a severe test of the models and 
strongly accentuates their differences. 

Figures 3-5 compare axial distributions of -dP/ 
dZ, PD, and maximum W (IV,,) for the three 
models. Generally, small differences in behavior are 
observed, particularly between the proposed and first 
alternate models. The total pressure defect for the 
proposed, first alternate and second alternate 
models, respectively, are 1.571, 1.622, and 1.205. If the 
entrance length is taken to be the value of Z at which 
IV,,,,, is 99% of its fully developed flow value, then the 
corresponding values of entrance length are Z = 
0.106, 0.104, and 0.099. The average, or apparent, 
Fanning friction factor between the duct inlet and the 
axial location Z is given by - P/(2ZRe). For Z = 0.1, 
which is about equal to the entrance length, the 
average friction factor of the first and second alter- 
nate models differ from that of proposed model by 
only 0.6% and -4.8%, respectively. 

Published solutions for the two extremes of absolute 
eccentricity, i.e. e = 0 and e = row, are another means 
of verification. The e = 0 extreme is a concentric 
annulus and the e = r,, extreme, which has the center 
of the inner cylinder on the circumference of the outer, 
besides being a severe test of the proposed model, 
represents a circular tube of radius row. 

The hydrodynamic solution of [2] for a concentric 
annulus of y = 0.4 is compared with the (E = 0.001, y 
= 0.4) solution of the proposed model. While the total 
pressure defect was found to be 0.67 in [2], a value of 
0.710 was obtained in [l] which compares favorably 
with the 0.714 value obtained in the present analysis. 
Figure 6 shows the close agreement between W 
distributions of [2] and that of the present solution. 

The e = row extreme corresponds to the geometry (E 
= 1.0, y = 0.). Unfortunately, truncation errors in the 
present solution increase as E approaches 1.0 and y 
approaches 0. This happens because as the absolute 
eccentricity increases, more of the interval 0 2 rl 5 71 
occurs near the narrow part of the annular gap, 
causing a dense concentration of constant r) grid lines 
at this side of the gap and a sparse distribution at the 
other. The effect of the truncation errors was assessed 
by solving the fully developed flow with both 24 and 48 
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FIG. 6. Comparison of dimensionless axial velocity for y 
= 0.4. This work (E = 0.001) vs the concentric annulus 

solution of Sparrow and Lin [2]. 
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FIG. 7. Comparisons of dimensionless pressure, maximum 
dimensionless axial velocity, and pressure defect. This work 
(B = 0.9, y = 0.1) vs the circular tube solution of Hornbeck 

[‘41. 

equal q intervals. From these solutions it was con- 
cluded that (E = 0.9, y = 0.1) is representative of the 

closest geometry to the desired one for which the 
truncation errors are acceptable. Hence, in Fig. 7 the 

present entrance region solution for (c = 0.9, y = 0.1) 
is compared with the entrance region solution for a 
circular tube provided by Hornbeck [14]. Contrary to 

the assumptions of a similar comparison in [8], the 
dimensionless variables of the tube and the annulus are 
defined analogously with the hydraulic diameter of the 
tube being its diameter and the hydraulic diameter of 
the annulus being given by equation (25). 

A comparison of the fully developed flow solutions 
of the two geometries provides an indication of how 
well we can expect the solutions for the entrance region 
to compare. For this comparison the tube solution is 

the classical analytical one and the fully developed 
flow equations of the eccentric annulus were solved 
with a finite difference grid with 48 equal q intervals 

instead of the 24 used for the entrance region solutions. 
The annulus as compared to the tube is found to have a 
-dP/dZ which is 127; smaller and a W,,, which is 
3.8% larger and is displaced 0.056 Y,, from the center of 
the outer cylinder. In spite of these differences, Fig. 7 
shows that the present solution compares reasonably 
well with that of [14]. The close agreement in the figure 
at Z = 0 is a result of the manner in which the 
dimensionless variables are defined. The assessment of 

truncation errors in the present solution, as described 
above, indicates that W,,, at large Z is about 4”/;; too 
large. A reduction in the W,,,, of the present solution 
would make the W,,,, agreement of Fig. 7 even better. 

5. RESULTS 

All eccentric annular geometries are contained 
within the unit square (0 I E < 1,O 2 y < 1). The five 
geometries (c = 0.9, y = 0.5), (c = 0.5, y = 0.5), (c = 
0.7, y = 0.3), (c = 0.9,~ = O.l), and (c = 0.5, y = 0.1) 
were selected for analysis. These were chosen from the 

L 

FIG. 8. Dimensionless axial velocity (c = 0.5, y = 0.5). 

quadrant of the unit square with largest c and smallest 

y where the effects of eccentricity are greatest. Typical 
axial velocity behavior is shown in Fig. 8 which 
provides W as a function of Z. Four values of 1 along 
the curve < = <* in the annular cross-section of 

geometry (c: = 0.5, y = 0.5) are considered. The 
velocities at q = K and q = 3/8 71 each display an initial 
increase in value near the duct inlet, i.e. Z = 0, which is 
caused by the ejection of flow from the developing 
boundary layers located along the inner and outer 
walls. This initial velocity increase is followed by a 
decrease as fully developed flow values are approached. 

The velocity distribution at ‘1 = ir/6 has a barely 
discernible maximum and at q = 0 the axial velocity is 
always increasing and ultimately approaches a maxi- 
mum asymptotically. 

Fully developed flow results provide considerable 
insight into the effect of geometry on hydrodynamic 
performance. These results can be obtained by the 
same methods as those used for a single Z plane of the 
entrance region except that, since the left-hand side of 
equation (28) is identically zero, only equations (28) 

and (31) need be solved. Table 1 provides fully de- 
veloped flow values of - dPjdZ and W,;,, for the five 
selected eccentric geometries and the nearly concentric 
one used in the model verification. In all six cases, 
including the most eccentric (c = 0.9, y = 0.1) one, the 
method of defining [* was that of the less eccentric 
geometries. The issue of truncation errors, raised in the 
previous section, is also addressed by the table. For all 
five significantly eccentric geometries, the fully de- 
veloped flow solutions were repeated with 48 equal q 
intervals used in place of 24. These additional results, 
shown in parentheses, indicate negligible truncations 
errors for all but the most eccentric geometry, for 
which the truncation errors are moderate. 

All geometries are listed in order of decreasing?, and 
with each group of constant y, in order of decreasing c. 
The values of -dP/dZ calculated by [18] as tabulated 

on p. 326 of [ 191 and shown in brackets in Table 1 are 
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Table 1. Summary of hydrodynamic results 
-. 

Fully developed 
Geometry flow results Total pressure Entrance 

F Y - dPjd2 W max defect length* 
- 

0.9 0.5 22.84 2.324 2.060 0.313 
(22.82)1 (2.310) 
[22.844]$ 

0.5 0.5 35.33 2.313 2.143 0.254 
(35.33) (2.372) 
[35.342] 

0.04 0.5 47.63 1.508 0.688 ( 0.0116C 

10-S 0.4 47.34 1.516 0.714 0.015 

0.0 0.4 47.36 1.513 

0.7 0.3 29.71 2.277 1.959 0.156 
(29.72) (2.274) 
[29.774] 

0.0 0.3 46.92 1.522 

0.9 0.1 28.81 2.152 I.571 0.106 
(28.17) (2.076) 
[28.560] 

0.5 0.1 36.70 2.149 1.535 0.0897 
(36.71) (2.148) 
[36.846-J 

0.0 0.1 44.69 1.567 0.7847 0.0175q 

AW 0.0 32.00 2.000 1.257 0.0541 B 

* The entrance length is taken to be the value of Z at which W,,, equals 990;, of its fully developed flow value. 
?A11 values in parentheses were obtained from the present solution with 48 equal q intervals. 
$ All values in brackets were obtained from [lS] as tabulated on p. 326 of [19]. 
0 For concentric annuli ail fully developed flow results were obtained from the classical solution. 
11 These data are from the work of [ZO] as tabulated by [Zl] and can be found on p. 288 of [lS]. 

in very close agreement with the current solution. 
Geometries for which either I: or y is zero are also 
included for purposes of comparison. The fully de- 
veloped flow results for these concentric geometries 
are from the classical closed-form solution. The total 
pressure defect and entrance length data for these 
geometries are from the work of [20] as tabulated by 
[21] and can be found on p. 288 of [19]. 

The values of -dP/dZ in both Tabie 1 and Fig. 9 
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FIG. 9. Dimensionless axial pressure gradients for parametric 
values of (E, Y). 

show, as one would expect, that for a fixed y, increasing 
F decreases the hydraulic resistance. The values of 
W,_in the table, however, have a trend which is not as 
predictable. The y = 0.5 and the y = 0.1 results show 
that, while a significant increase in IV,,, is observed 
between c = 0 and I: = 0.5, the values in parentheses 
indicate a slight decrease between E = 0.5 and E = 0.9. 
This phenomenon occurs because in the two E = 0.5 
geometries the velocities at the narrowest part of the 
annular gap are already very low, and further increases 
in E widen the wider part of the gap where flow 

velocities are large. Since the average velocity is fixed, 
increasing c causes the velocities in the widest part to 
decrease and thereby lower W,,,. 

In Fig. 10, the two curves for y = 0.5 tend to be 
parallel, as do the two for 1~ = 0.1. Had the analysis of 
the entrance region for the (E = 0.9, y = 0.1) geometry 
been done with a finer mesh, as was possible in the fully 
developed flow case, the (E = 0.9, y = O.l)curve would 
probably have remained below the (c = 0.5, ‘/ = 0.1) 
curve. This anticipated behavior is consistent with the 
two y = 0.5 curves where the (E = 0.9,~ = 0.5) curve is 
below the (c = 0.5, y = 0.5) curve. Another obser- 
vation is that both the figure and the table indicate that 
the hydrodynamic entrance length increases with 
increasing B or y. 
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FIG. 10. Maximum dimensionless axial velocitv for nara- 
metric values of (F, y). . 

The pressure defect distributions of Fig. 11 parallel 
the flow developments of Fig. 10. This occurs because 
the magnitude of the pressure gradient and the wall 
shear stresses both decrease and the axial momentum 
increases as the flow develops. This parallel behavior 
leads one to suspect that, if in Fig. 10 the (c = 0.9, y 

= 0.1) curve should be below the (c = 0.5, y = 0.1) 
curve, the same should also be true in Fig. 11. One 
would then conclude that in the table the total pressure 
defect for the (E = 0.9, y = 0.1) geometry is less than 
1.535, rather than 1.571. In either case, the table 
indicates that for both y = 0.1 and y = 0.5 the total 
pressure defect is almost constant between E = 0.5 and 
F = 0.9. For this range of c, the table shows a steady 
decrease in total pressure defect with decreasing y, 
while the concentric geometries display the opposite 
trend. 

Shah and London [19] have compiled hydrody- 
namic data in a form which is practical for use by 
designers of compact heat exchangers. As indicated by 
the reference, data generated by the present analysis 
was transmitted by private communication. From this 
data, which included P tabulated as a function of 2, 
they provide friction factor tabulated as a function of 2 
for the five significantly eccentric geometries of the 
present analysis. Since the current nomenclature does 

not agree with that of [19], the Appendix compares 
essential variables of the two nomenclatures. 

6. CONCLUSIONS 

The solution of the hydrodynamic entrance region 
was obtained from analysis of the proposed hy- 
drodynamic model. This model was developed from an 
order of magnitude anslysis of the Navier-Stokes 
equations and a transverse flow description which was 
based on physical arguments. Other transverse flow 
descriptions were tested as part of the verification of 
the model and were shown to produce similar results. 
The solution of the proposed hydrodynamic model for 
the geometry (E = 0.001, y = 0.4) compared rather well 
with the solution of [2] for concentric annuli, and the 
results for the rather eccentric geometry (E = 0.9, y = 

24 , -7 

L 

FIG. 11. Pressure defect for parametric values of (&, y). 

0.1) compared reasonably well with the solution of 
[14] for the circular tube. 

Some of the salient aspects of the numerical methods 
used to solve the equations of the entrance region 
mode1 are : (1) the use of both variable axial step sizes 
and variable 5 intervals in the finite difference grid, (2) 
the use of Allen’s method in the finite difference 
representation of the axial momentum equation, and 
(3) the use of a modified version of the S.O.R. method 
in which Aitken’s A2 method is used to accelerate the 
convergence of the iterates of dP/dZ. 

The results of the current analysis quantify some of 
the perhaps foreseeable effects of eccentricity on 
annular geometries such as longer hydrodynamic 
entrance lengths and lower hydraulic resistance with 
increasing E. The behavior of the total pressure defect, 
however, is less predictable. For concentric annuli, it 
decreases with increasing y while some of the eccentric 

geometries display the opposite trend. Moreover, for 
some values of y, the total pressure defect increases 
dramatically between e = 0 and E = 0.5, but remains 
relatively constant between 8 = 0.5 and e = 0.9. 

In conclusion, the numerical marching techniques 
described by [12] and used by [ll] to analyze the 
hydrodynamic entrance region of a square duct, have 
been extended to the eccentric annulus. In addition to 
providing data, the present solution demonstrates 
modeling and numerical techniques which are applic- 
able to ducts of other configurations. 
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APPENDIX 

Since Shah and London [19] on pp. 333-336 provide data 
generated by the current analysis, a nomenclature com- 
parison is provided in Table Al. 

Table Al. Nomenclature comparison 

Shah and London [19] Current analysis 

K(X) 

Lhy 

r* 
J. R. We&Ike, A Hanabook’of Numerical Matrix In- 
uersion and Solution of Linear Equations, pp. 83-84. John 

%.d% 
V+ 

E 

-pm-Q 
PD for fully developed flow 
value ofZ at which the maximum W 
has reached 99?< of its fully de- 
veloped flow value 
v 

IV,,, for fully developed flow 
Z 

Wiley, New York (1968). 

UNE SOLUTION NUMERIQUE DE L’ECOULEMENT LAMINAIRE EN DEVELOPPEMENT 
DANS LES CONDUITES ANNULAIRES EXCENTRIQUES 

R&m&On analyse I’tcoulement laminaire incompressible dans des conduites droites dont la section est 
annulaire excentrique. Des methodes numeriques sont utilides pour rtsoudre un modtle hydrodynamique 
approche qui est developpe a partir des equations de Navier-Stokes en representation par coordonnees 
bipolaires. Des solutions obtenues se comparent favorablement a celles des modeles altemts et a des 
solutions publiees pour I’anneau concentrique et le tube circulaire. Des risultats sont presentis pour cinq 

geometries ditlerentes. 

EINE NUMERISCHE LOSUNG FUR DIE LAMINARE ANLAUFSTRGMUNG IN 
EXZENTRISCHEN RINGKANALEN 

Zusammenfassung-Es wird die laminare inkompressible Stromung in geraden Kanalen mit exzentrischem 
ringformigem Querschnitt untersucht. Numerische Methoden werden angewandt, urn ein hydrodynami- 
sches Naherungsmodell zu l&en, das aus der Bipolarkoordinatendarstellung der Navier-Stokes-Gleich- 
ungen entwickelt wurde. Die Liisungen des vorgeschlagenen Modells lassen sich gut mit den Losungen zweier 
attematlver Modelle und mit veroffentlichten Losungen fur den konzentrischen Ringraum und das 

Kreisrohr vergleichen. Fur ftlnf verschiedene Geometrien werden Ergebnisse angegeben. 

rH,iCJIEHHbIZi PAC9ET JIAMMHAPHOI-0 HEYCTAHOBMBIBEFOC~ TEYEHMR 
B 3KCUEHTPMYECKMX KOJIbHEBbIX KAHAJIAX 

AwoTaurm - Arianeaspye-rcn narvninapnoe reqerine necxoiMaeMofi ;KHLIKOCTH B npsMbIx KaHanax 
3KcueHTpHHecKoro Konbueaoro ceHeHHs. Ann pmemin IIpH6JIHIKeHHOH rrinponmiah4srecxoW h.tonensr. 
OCHOBaHHOH Ha BbIpameHHbIX 6 6HnOJIrpHbIX KOOpnHHaTaX ypaBHeHRaX HaBbe-CTOKCa, “C”O,,b3y,OTCR 

‘IWCJEHHblC MCTOjJbI. PC3)‘llbTaTbl ~“IeHHZ4 XOpOL”0 COrJ,aC,‘lOTC5l C LIaHHUMH, “0,lj’WHHblMB C 

IlOMOUlbH) LIByX .LlpyI-HX MOLP.YlCi! II C Ony6JIHKOBaHHbIMH peIIIeHHaMH Qrrll KOHUeHTpHHeCKOrO KOJIbue- 
nor0 KaHana H KpyrnoB Tpy6bI. PesynbTaTbI npencTaBneHbI ans nnrH pa3nHHHbIx reohlespal. 


