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Abstract—Laminar incompressible flow in straight ducts of eccentric annular cross section is analyzed.
Numerical methods are used to solve an approximate hydrodynamic model, which was developed from the
bipolar coordinate representation of the Navier-Stokes equations. Solutions obtained for the proposed
model compare favorably with those of two alternative models and with published solutions for the
concentric annulus and the circular tube. Results are presented for five different geometries.

NOMENCLATURE

a, location of the positive pole of the bipolar
coordinate system [m];

D,, hydraulic diameter 2(r_,, —r;,,)[m];

e, absolute eccentricity, or center-to-center
distance [m];

h, coordinate scale factor, defined by equa-
tion (11) [m];

H, dimensionless h, h/D,,

P thermodynamic pressure [Pa];

P, dimensionless p, (p—p.)/(pW?);

PD, pressure defect, defined by equation (37);

r, radius [m];

r¥, radius of the circle formed by the curve
{=0*[m];

Re, Reynolds number, pwD, /u;

t, time [s];

u, { component of velocity [m/s];

U, dimensionless u, puD,/u;

v, n component of velocity [m/s];

Vv, dimensionless v, pvD,/u;

v, velocity vector [m/s];

w, axial component of velocity [m/s];

W, average w (volume rate of flow per unit
area) [m/s];

W, dimensionless w, w/w;

X, ¥, Cartesian coordinates in the transverse
plane [m];

z, axial coordinate [m];

Z, dimensionless z, (z — z.)/(D,Re).

Greek symbols

Vs radius ratio, r;, /7. ;
AZ, dimensionless axial step size;
& relative eccentricity, €/(row —iw);
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éom, bipolar coordinates in the annular cross-
section ;

{*, cylindrical surface of constant { along
which the two transverse flows travelling
away from the two walls are assumed to
meet ;

i coefficient of viscosity [Pa.s];

s density [kg/m?*].

Subscripts

e, entrance (inlet to the duct);

i j, indices which together denote points of the
finite difference grid (i corresponds to { and
jton)

iw, inner wall;

ow, outer wall;

max, maximum.

1. INTRODUCTION

THE FLOW entering a duct from a reservoir undergoes a
development whereby the relatively flat inlet velocity
profile gradually transforms into a fully developed
profile. Flow developments which occur in the en-
trance region of ducts have been widely studied
because they increase the duct pressure loss and alter
the rate of heat transfer between the fluid and the duct
wall. Lundgren et al. [ 1] devised a means of determin-
ing the pressure loss due to the entrance region in ducts
of arbitrary cross-section. Sparrow and Lin [2], Mura-
kawa [3], Heaton et al. [4], and Shumway and
McEligot [5] analyzed the hydrodynamic entrance
region of concentric annuli. The axial momentum
equation for fully developed flow in eccentric annuli
was solved by Redberger and Charles [6] with a
numerical technique, and by Snyder and Goldstein [ 7]
with a separation of variables technique. Hence,
developing flow in concentric annuli and fully de-
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veloped flow in eccentric annuli have been extensive-
ly studied. The only known solutions of the
hydrodynamic entrance region problem for eccentric
annuli are the finite difference solution of Feldman
[8], which is the basis of this paper, and Wilson [9]. In
the latter a linearized version of the governing equa-
tions is solved and the analysis leads to a 2-dim.
eigenvalue problem. Although Galerkin’s method is
applied to this eigenvalue problem and shown to
converge, the mathematical expressions containing the
solution are not evaluated.

2. MATHEMATICAL MODEL

The fluid is assumed to be incompressible, laminar
and Newtonian, and to have constant properties. Body
forces are neglected and only forced convection is
considered. The vector form of the governing equa-
tions is:

continuity equation
V'V=0, (1)
momentum equation

DV )

Py = ~Vp UV, 2)

where V is velocity, t is time, p is density, p is

thermodynamic pressure, and u is the coefficient of
viscosity.

In the analysis of flow in eccentric annuli, it is
convenient to represent the governing equations in the
bipolar coordinate system. The bipolar coordinates
(¢, n) are related to the Cartesian coordinates (x, y) by
the following two equations:

2 s 2
(i> + (Z — coth C)
a a
2 N2
<i - cotn) + <Z>
a a

Figure 1 shows curves of constant { and constant 7
plotted as functions of x and y. In the figure the positive
poleis shown to be located on the y/a axisaty = a. The
constant { curves form a family of eccentric circles
which are orthogonal to the family of constant p
curves. The constant { curves encircle the pole and the
constant 5 curves are circles which intersect it.

The geometry of any eccentric annulus can be
characterized by the dimensionless pair of radius ratio,
v, and relative eccentricity, ¢, which are given by:

csch? ¢

fl

for — oo < <, (3)

cscln  for 0 <5 < 2m (4)
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7= (5)

£= (6)
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Fig. 1. Bipolar coordinate curves for the

10<{<20,0<n <n).

region

where the subscriptsiw and ow correspond to the inner
and outer wall of the annulus, respectively, r is the wall
radius, and e is the absolute eccentricity, or center-to-
center distance, of the annulus. From equation (3), one
observes that each constant { curve is of radius csch {
and has its center located on the x/a axis at y/a =
coth {. Therefore, r,,, r,.. and e of equations (5) and
(6) can be replaced by a - {csch {;,), a - (csch {,,,), and
a - (coth {,, — coth{,,), respectively. With the aid of a
few hyperbolic function identities, one can express
equations (5) and (6) solely in terms of y, ¢, cosh {,,, and
cosh{,,. When the resultant pair of simultancous
equations is solved, the following two expressions,
which can also be found in [7], are obtained. Hence

(1~ )+ (1 + &%)

h (. = , 7
cosh ¢, % (7)
y(1+6%) + (1—¢?
cosh Ciw - L_F_)_(—Q (8)
2ey

Values of ¢ and y, which by definition are both
between 0 and 1.0, can be used in the above two
equations to find values of {_, and {;,. Planar sym-
metry enables us to consider only the half of the
annulus which is between = 0 and n = n. Hence the
region of interest is ({,, <{ < {4, 0 <1 < 7).

The general orthogonal curvilinear coordinate ex-
pressions for the vector operators of equations (1) and
(2) along the necessary bipolar coordinate scale factors
can be found in [10]. These enable the continuity
equation and the three vector components of the
momentum equation to be represented in the bipolar
coordinate system. Unfortunately, no practical means
appears to exist which would allow one to solve the
resultant four simultaneous partial differential equa-
tions in their entirety. Therefore, these equations will
be used in the development of an approximate model.

In the model development, knowledge of the relative
magnitudes of the individual terms of the four scalar
equations will enable one to judge the relative impor-
tance of each term. The values of the terms vary
throughout the entrance region and cannot be known
on a local basis unless the solution of the equations is
known. One can, however, determine in a global sense
relative magnitudes of the terms which represent
averages taken over the entire entrance region. If we
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assume that the global magnitude of a term is a
measure of the impact it will have on the solution, then
we can assess the degree of approximation involved in
eliminating that term. This order of magnitude anal-
ysis can be found in [8] where it is assumed that the
ratio of the length of the entrance region to the duct
hydraulic diameter is much greater than 1. For this
ratio to be at least 10, for example, the entrance length
values presented in Table 1 of Section 5 indicate that
the minimum Reynolds number would typically be
between 30 and 1000, depending upon annular ge-
ometry. Since, as indicated below, the model ignores
transverse pressure gradients and assumes a uniform
inlet velocity profile, the minimum acceptable Rey-
nolds number is expected to be a few hundred rather
than 30 and the solution is not expected to be accurate
extremely close to the duct inlet. The order of magni-
tude analysis leaves the continuity equation unaltered
and causes a reduced form of the axial momentum
equation to replace all three scalar components. The
continuity equation and the reduced momentum equa-
tion, expressed in bipolar coordinates, are:

¢ 0 0
(h —(h — (h*w) =0, 9
5C(u)+an(v)+ﬁz( w) 9
u6w+v6w+wﬁ_w
Plnac Thon TV
dp  ufd*w 8w
——E+h—i|:5?+577, (10)
where
he— 4 (11)

cosh{ — cosn’

z is the axtal coordinate, u, v and w are the {, # and z
components of velocity, and a is the location of the
pole (refer to Fig. 1). The boundary conditions for
equations (9) and (10) are that all three components of
velocity, u, v and w, are zero at { = {,, and at{ = (.

While 4, v and w in equations (9) and (10) are
functions of {, n and z, the pressure gradient dp/dz is a
total derivative which is a function of only z. Since
there are three unknown components of velocity in
addition to the pressure gradient, equations (9) and
(10) do not form a complete mathematical model.
Carlson and Hornbeck [ 11] faced a similar situation in
the solution of the hydrodynamic entrance region of a
duct of square cross-section. They developed a re-
lationship between the two transverse velocity com-
ponents in the square cross-section by assuming that
all of the transverse flow was directed along straight
lines which cross the center of the duct. Brief con-
sideration of the mechanism which produces the
transverse flow in an annular duct will provide sub-
stantial information about its path. When a flow with a
uniform axial profile and no transverse components
enters a circular tube, the flow near the wall is retarded
and transverse flow is sent radially and symmetrically
toward the center. Similarly, external axial flow along

FIG. 2. Transverse flow description.

the lateral surface of a cylinder produces radial
symmetric transverse flow away from the center of the
cylinder. If the cylinder is placed inside the tube to form
a concentric annulus, the two transverse flows will
meet and go to zero along a surface of revolution. If we
think in terms of two boundary layers simultaneously
forming along the two walls, then this surface must
fall between the two boundary layers and a reasonable
approximation to it is the cylindrical surface of
constant radius which intersects the ridge of maximum
axial velocities for fully developed flow. At axial
locations far from the duct inlet this representation is
exact and near the duct inlet it is reasonable.

In the eccentric case, a similar mechanism prevails.
Figure 2 depicts the expected paths of the transverse
flow. If the transverse flow of either surface could
behave independently of the other surface, it would
follow the radial lines emanating from its surface. The
presence of the other surface, however, causes the
transverse flows of each surface to bend away from
their respective radial lines. As the two flows approach
each other, they travel along paths which tend to
transfer flow from the narrower side of the annulus to
the wider side. The surface along which the two
transverse flows merge, by similar arguments to those
proposed for the concentric case, can be approximated
by the cylindrical surface which intersects the ridge of
maximum axial velocity for fully developed flow. For
the sake of mathematical simplicity, this surface is
approximated by one of constant radius, r*. In reality,
as the absolute eccentricity increases, the curve in
question deviates significantly from one of constant
radius and tends to become egg-shaped. Fortunately,
as demonstrated in Section 4, the solution is only very
mildly sensitive to the choice of transverse flow
prescription.

For a concentric annulus the classical closed-form
representation of r* is r,, /(1—y?)/In(1/y%). This
representation is also used to approximate r* for all
but the most eccentric geometry (¢ = 0.9, y = 0.1)
considered in the present analysis. The use of the above
r* representation in this extreme case causes the circle
formed by the r* curve not to include the center of the
curve defining the outer wall. This causes the radial
lines emanating from the inner and outer walls not to
intersect in the manner depicted in Fig. 2 and hence the
model breaks down. Therefore, in this case, r* is
arbitrarily taken to be half of the radius of the outer
wall,
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Based on the above description and assumptions, a
mathematical relationship for the transverse velocity
ratio, v/u, was developed and is

For { # {*
ty =t
= F—", (12)
u 1+ 1,0,
.
csch ¢, — csch (*
St T Tt ford < O,
csch ¢ — csch {*
F=< (13)
csch (,, — csch {* .
Sw T for > (K,
csch ¢ — csch (*

-

Hsinh ¢
= e . (14)
l—'j(sinh {ow) (cOtn) — Hsing
—y
Hsinn for ¢ < O*.
Hsinh{ — ——cosh {_,
-7
t) = {13)
Hsinn for { » {*,

Hsinh{ — r‘~~cosh $ow
—
where (* is the { curve of radius r* and H is the
dimensionless form of i and given by
0.5sinh {,,

H :(I—y)(coshg—cosn)' (16)

For (={*
u=70a (17

Equations (9)}-(17) together with the zero-velocity
boundary conditions and a uniform inlet velocity
profile provide a complete mathematical model of the
hydrodynamic entrance region. As is well documented
by Hornbeck [12], however, several hydrodynamic
entrance region solutions including those for parallel
plates [13], a circular tube [14], and a square duct
{11}, have also used the integral form of the continuity
equation. The models in these solutions are similar to
the current one in that they all contain the differential
form of the continuity equation, a reduced axial
momentum equation in which the pressure gradient is
a total derivative, and, in the square duct case, a
transverse flow model. Of course, since the integral
form of the continuity equation can be obtained by
applying the divergence theorem to the differential
form, the integral form is mathematically redundant.
In the finite difference solution, however, this re-
dundancy is avoided because the differential form is
not represented in all nodal regions close to the duct
walls. The bipolar coordinate form of the integral
continuity equation is

E. E. FELpMaN, R. W, Horngeck and J. F. OsTeRiE

T o 2).- 2 B PP
Ea (1 —y*)weseh?(,, = whd{ dy, (18)
[

where w is the average axial velocity taken as the
volume rate of flow per unit of cross-sectional area.
Equation (18) is particularly useful because it repre-
sents a physical constraint which does not include the
transverse velocity components.

3. METHOD OF SOLUTION

The equations of the model are expressed in dimen-
sionless form with u, v, w, p, z and h, respectively
represented by:

D
U= ‘%Ji, (19)
D
V= ‘%‘l, (20)
w
W= 21
P= %;T"- (22)
z -z,
“=D.Re’ @)
h
h
H=o. (24)
h

where the subscript e of z, and p, corresponds to the
entrance of the duct, and D, and Re are the hydraulic
diameter and the Reynolds number, respectively, and
are given by

Dy =2r,, ~ 1) = 2a(l — 7)esch (. (25}
<D

Re = "7k (26)
u

With these definitions one may express the con-
tinuity equation, equation {9), and the axial momen-
tum equation, equation (10), respectively, as

- - ~

F(E (HU) + (T('?;(HV) + {?(;Z«(HZW) =0, 27

Uaw Viw W
He "Ha "oz
dP t [e*w  &Ewl
i ]
(28)

Inequation (12), v/uequals V/U and all other variables
in equations {12)-(16) are already dimensionless. Thus
equations (13)-{16) remain unchanged and equations
(12) and (17) become

d F Lot

A o e
- Figa,, fre#c
U=

29)

0 for { = J* (30)



Laminar developing flow in eccentric annular ducts

The dimensionless form of the boundary conditions is
thatat{ = {,andat{ = {,, U=V =W =0
Equations{23)and (21) provide that at the ductinlet Z
= 0 and W = 1 at all interior values of {. The
dimensionless representation of the integral form of
the continuity equation, equation (18), is:

" WH2Cdy = 1.
R1+vJ T

A finite difference solution to the model is ob-
tained from a numerical marching technique in
which the hydrodynamic entrance region is sectioned
into a series of parallel planes which are perpendicular
to the Z axis. At the inlet, the flow is taken to have a
uniform axial profile and no transverse velocity com-
ponents. The hydrodynamic modelis solved at the first
plane beyond the inlet independently of all succeeding
planes. The solution for the second plane depends only
upon that for the first and, similarly, the solution for
the k + | plane depends only upon that for its
immediate predecessor, the k plane. Thus, the entire
hydrodynamic entrance region is solved by solving one
plane at a time in succession. In each plane, the region
defined by ({,, < ¢ < (i, 0 < 8 < 7) is sectioned by
sets of constant { curves (with index i) and constant %
curves (with index j) to form a finite difference grid
covering half of the symmetric annular cross section.
This grid is chosen to be sufficiently fine to enable
solutions with acceptably small truncation errors to be
produced without requiring excessive amounts of
computing time and storage. The ( interval from {, to
{* and the one from {,,, to {* are each divided into the
16 proportions which, starting from either wall, are
0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.05, 0.05,0.1, 0.1, 0.1,
0.1,0.1,0.1, 0.1, 0.1. Thus the { grid size adjacent to the
outer wall is 0.01 - ({* — {_.) and the one adjacent to
the inner wall is 0.01 -{{,, — {*). The very small grid
spacing at the walls accommodates the steep velocity
gradients that occur there. The  interval from Oto nis
divided into 24 equal segments. Therefore, there are
775, ie. (2 x 16 — 1) - (24 + 1), interior grid points,
with indices (i, j), for which values of the three
components of velocity, U;;, V,; and W, are
required and 25 points on each { boundary for which
all values of U, , V; , and W, ; are zero.

In the finite difference representation of equation
(28) at the k + 1 plane, all velocity coefficients of
derivatives are evaluated in the k plane, and only the
derivatives with respect to { and # are expressed in the
k + 1 plane. A simple Ist-order backward difference,
which uses vaiues in both planes, is employed to
approximate the axial derivatives. When equation (28}
1s represented at all 775 interior points of a plane, a
simultaneous set of 775 equations containing 775
unknown values of W, ; and one unknown value of
dP/dZ are produced. There are an even number of
equal 5 intervals and all { intervals are in pairs of equal
size. Therefore, Simpson’s 1/3 rule can be used to
approximate the double integral of equation (31). The
finite difference representation of equation (31) com-

(3h
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pletes the set of 776 simultaneous linear equation and
unknowns.

A finite difference approximation provided by Allen
[15] for grids of equal spacing and extended in [8] to
grids of unequal spacing is used to approximate the {
and n derivatives of equation (28). The general form of
this finite difference approximation is:

2*S as
G5
1 — expl (¥, — ¥, )]

Tl - exp[—i(dhu - ‘[’1)],

where the dependent variable § is a function of the
independent variable , 4 is a constant, and [ — 1, ],
and ! + 1 are the indices of three consecutive points of
increasing value in the ¥ finite difference grid. It can be
shown, with the aid of L’Hdpital’s rule for inde-
terminate forms, that if 4 = 0, equation (32)isidentical
to the familiar central-difference representation of the
second derivative which can be obtained from a 2nd-
order Taylor series approximation.

If dP/dZ were known, the 775 simultaneous linear
equations produced at each plane by equation (28)
could be solved by the method of successive over-
relaxation (S.O.R.). Since at each plane dP/dZ is
unknown, appropriate guesses for all 776 unknowns
are made and the following algorithm is used.

L. All 775 W, s are updated by performing an
iteration by the method of S.O.R. on all 775 equations
produced by equation (28).

2. All 776 unknowns are updated by dividing each
by the numerical approximation of the lefi-hand side
of equation (31).

3. The above two steps are repeated.

4. If
(dP ) (dP)
dz J, dz /,
S7aP (d? <b
dZ /, VAN
where the subscripts 1, 2 and 3 refer to the latest three

iterates in order of oldest to newest, then the current
value of dP/dZ is replaced by

ooy |l ()]
dz <d2)3 (dP) _2<SP) +(dP>'

=S +{1-1)8 + 18,

A = )+ Wy = W)
(32)

33)

(34)

dz dZ J, " \dz ),
(35)

5. The above four steps are repeated until the
absolute value of the S.O.R. residual of largest magni-
tude in step 1 is smaller than a specified value.

Although a uniform profile of W = 1 identically
satisfies equation (31), it only approximately satisfies
the numerical representation of equation (31). Hence,
at the duct inlet W was increased slightly to avoid a
numerically induced flow discontinuity between the
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inlet and the first solution plane. This value of W and

an arbitrarily chosen negative value of dP/dZ were
used at the first solution plane to start the algorithm.
At each succeeding plane, the algorithm was staried
with the solution of its immediate predecessor.

Step 4 increased the rate of convergence of the
dP/dZ {terates, which had been much slower than that
of the W, , iterates, by about an order of magnitude,
Equation {35} of step 4 is Aitken's A* formula {16}
algebraically expressed in a form suggested by West-
lake [17]. This form is well suited for evaluation by
computers which set the quotient in eguation (35) to
zero when the divisor is zero, thereby leaving the latest
dP/dZ vnchanged. Criterion (34} was included be-
cause equation (35) can produge an extremely bad
iterate of dP/dZ when the magnitude of the difference
of successive iterates is not declining. An S.OR.
acceleration parameter in step 1 of 1.6 and a con-
vergence criterion in step 5 of 107° were found to
produce reasonably fast convergence o an accurale
solution and were generally used.

After all W, for a plane are obtained, the numerical
approximation 1o equation (27)is used in conjunction
with equations (29} and (30} to directly evaluate
without iteration all of the unknown U, ;and V, ; in
the plane. First-order backward and forward differ-
ences are used almost exclusively in the numerical
representation of equation {271

At gach plane dP/dZ is used to approzimate P and
the pressure defect, PD. The Ist-order backward-
difference representation of dP/dZ at the k + 1 plane
yields

dF

Py = B — Fosy = Zih 36
¥ 1 e * (&Z}kﬂ{ R+ 1 1) {36}

whete the subscripts & and & + 1 refer to two suc-

cessive planes, The pressure defect, or incremental

pressure drop number, at any plane is approximated

by
4P

where (dP/dZ), is the fully developed flow value of
dP/dZ. The asymptotic value which PD approaches as
the flow becomes fully developed will be referred to as
the total pressure defect,

Near the duct inlet very small axial steps sizes, AZ, of
no larger than 0.25 x 107 were used to accommodate
the steep axial gradients which normally ocour at the
inlet. The inlet AZ was gradually increased with
increasing Z toa maximum AZ of 0.001. Asatestofthe
adequacy of these prescribed step sizes, all of the step
sizes used to solve the geometry (¢ = 0.5,y = 0.5} were
multiplied by 0.05 and these reduced step sizes were
used to re-evaluate the initial portion of the entrance
region. The close agreement between these two so-
lutions provides additional confidence in the ability of
the larger step sizes to yield accurate resulfs. Typically,
560640 axial steps, requiring zbout 24-30min of

37
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computing time on the Univac 1108 computer at the
Carnegie-Mellon University Computation Center,
were nseded io obtain a complete hydrodynamic
entrance region soluticn. A detailed listing of the
FORTRAN IV computer programs and additional
information concerning the solution method can be
found in [8].

4, YERIFICATION OF THE MODEL

The principal assumption of the hydrodynamic
model is that the axial velocity and pressure distri-
butions are only moderately sensitive 1o the transverse
flow distribution. If this assumption is valid, then other
transverse flow distribution models should produce
similar resuits. Therefore, two alternative models are
identified and the results obtained with ail three are
compared.

In the first alternate model all of the transverse
flow is assumed to be along curves of constant . Thisis
compatible with the general boundary layer develop.
ment along the walls and has the advantage of being
independent of the surface { = {*, along which in the
proposed model the transverse flows from the two
walls meet. The mathematical representation of this
alternate model contains the same continuity and
momentum equations as the proposed model except
that ¥ is set to zero. The disadvantage of this alternate
model is that its lack of a velocity component in the
direction is physically uvnrealistic. Since the axial
velocity profile at the inlet is uniform, the y component
of velocity 1s needed to transfer flow from the nar-
rowest o the widest part of the annular gap so that
when the flow is fully developed the velocitiesalong the
ridge of mazimum axial velocifies increase monotog-
wally from one side of the annular gap to the other.

While there are fundamental differences between the
transverse flow descriptions of the proposed and first
alternate models, there are also basic similarities,
Both models satisfy the differential form of the con~
tinuity equation and have a transverse How which
perpendicularly meets both walls of the annulus. The
second alternate moedel, however, 18 designed to be
substantially different from either of the other two
models. This difference enables the sensitivity of the
hydrodynamic solutions to the choice of transverse
flow description to be further zssessed. In the second
aiternate there is no transverse flow and the math-
ematical representation of the model consists of
equations {31)and (28) with U and ¥ set to zero. Since
this model does not satisfy the differential form of the
continuity equation, it cannot be expected to produce
results which are as accurate as those of the other two
models.

Symmetry requires that all of the transverseflowin a
goncentric annulus be along symmetric radial lines.
Because this is predicted by both the proposed model
and the first aliernate model and because we are
secking solations for eccentric geometries, the highly
eccentric geometry {z = 098, 7 = 0.1} was chosen for
the comparison of the behaviors of the three models.
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This geometry enables a severe test of the models and
strongly accentuates their differences.

Figures 3-5 compare axial distributions of —dP/
dZ, PD, and maximum W (W,_,) for the three
models. Generally, small differences in behavior are
observed, particularly between the proposed and first
alternate models. The total pressure defect for the
proposed, first alternate and second alternate
models, respectively, are 1.571, 1.622, and 1.205. If the
entrance length is taken to be the value of Z at which
W . 18 99% of its fully developed flow value, then the
corresponding values of entrance length are Z =
0.106, 0.104, and 0.099. The average, or apparent,
Fanning friction factor between the duct inlet and the
axial location Z is given by — P/(2ZRe). For Z = 0.1,
which is about equal to the entrance length, the
average friction factor of the first and second alter-
nate models differ from that of proposed model by
only 0.6% and —4.8%,, respectively.

Published solutions for the two extremes of absolute
eccentricity, i.e. e = 0 and e = r_,, are another means
of verification. The e = 0 extreme is a concentric
annulus and the e = r,,, extreme, which has the center
of the inner cylinder on the circumference of the outer,
besides being a severe test of the proposed model,
represents a circular tube of radius r,,,.

The hydrodynamic sclution of [2] for a concentric
annulus of y = 0.4 is compared with the (¢ = 0.001, y
= 0.4) solution of the proposed model. While the total
pressure defect was found to be 0.67 in [2], a value of
0.710 was obtained in [1] which compares favorably
with the 0.714 value obtained in the present analysis.
Figure 6 shows the close agreement between W
distributions of [2] and that of the present solution.

The e = r,,, extreme corresponds to the geometry (¢
= 1.0,y = 0.). Unfortunately, truncation errors in the
present solution increase as ¢ approaches 1.0 and y
approaches 0. This happens because as the absolute
eccentricity increases, more of the interval 0 <n <=
occurs near the narrow part of the annular gap,
causing a dense concentration of constant n grid lines
at this side of the gap and a sparse distribution at the
other. The effect of the truncation errors was assessed
by solving the fully developed flow with both 24 and 48

i
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F1G. 6. Comparison of dimensionless axial velocity for y
= 04. This work (¢ = 0.001) vs the concentric annulus
solution of Sparrow and Lin [2].
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FiG. 7. Comparisons of dimensionless pressure, maximum
dimensionless axial velocity, and pressure defect. This work
(¢ = 0.9, y = 0.1) vs the circular tube solution of Hornbeck

[14].

equal n intervals. From these solutions it was con-
cluded that (¢ = 0.9, y = 0.1) is representative of the
closest geometry to the desired one for which the
truncation errors are acceptable. Hence, in Fig. 7 the
present entrance region solution for (¢ = 0.9,y = 0.1)
is compared with the entrance region solution for a
circular tube provided by Hornbeck [14]. Contrary to
the assumptions of a similar comparison in [8], the
dimensionless variables of the tube and the annulus are
defined analogously with the hydraulic diameter of the
tube being its diameter and the hydraulic diameter of
the annulus being given by equation (25).

A comparison of the fully developed flow solutions
of the two geometries provides an indication of how
well we can expect the solutions for the entrance region
to compare. For this comparison the tube solution is
the classical analytical one and the fully developed
flow equations of the eccentric annulus were solved
with a finite difference grid with 48 equal n intervals
instead of the 24 used for the entrance region solutions.
The annulus as compared to the tube is found to have a
—dP/dZ which is 12} smaller and a W, which is
3.8% larger and is displaced 0.056 r,, from the center of
the outer cylinder. In spite of these differences, Fig. 7
shows that the present solution compares reasonably
well with that of [ 14]. The close agreement in the figure
at Z =0 is a result of the manner in which the
dimensionless variables are defined. The assessment of
truncation errors in the present solution, as described
above, indicates that W at large Z is about 49 too
large. A reduction in the W, of the present solution
would make the W__agreement of Fig. 7 even better.

max

5. RESULTS

All eccentric annular geometries are contained
within the unit square (0 < ¢ < 1,0 <y < 1). The five
geometries (¢ = 09,7 = 0.5),(¢ = 05,y = 0.5), (¢ =
0.7,y = 0.3),(¢ = 0.9,y = 0.1),and (¢ = 0.5,7 = 0.1)
were selected for analysis. These were chosen from the
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FiG. 8. Dimensionless axial velocity (¢ = 0.5, y = 0.5).

quadrant of the unit square with largest ¢ and smallest
y where the effects of eccentricity are greatest. Typical
axial velocity behavior is shown in Fig. 8 which
provides W as a function of Z. Four values of 1 along
the curve { = {* in the annular cross-section of
geometry (¢ = 0.5, y = 0.5) are considered. The
velocities aty = wand y = 3/8 meach display an initial
increase in value near the ductinlet,i.e. Z = 0, which is
caused by the ejection of flow from the developing
boundary layers located along the inner and outer
walls. This initial velocity increase is followed by a
decrease as fully developed flow values are approached.
The velocity distribution at y = 7/6 has a barely
discernible maximum and at # = 0 the axial velocity is
always increasing and ultimately approaches a maxi-
mum asymptotically.

Fully developed flow results provide considerable
insight into the effect of geometry on hydrodynamic
performance. These results can be obtained by the
same methods as those used for a single Z plane of the
entrance region except that, since the left-hand side of
equation (28) is identically zero, only equations (28)
and (31) need be solved. Table 1 provides fully de-
veloped flow values of — dP/dZ and W, for the five
selected eccentric geometries and the nearly concentric
one used in the model verification. In all six cases,
including the most eccentric (¢ = 0.9,y = 0.1) one, the
method of defining {* was that of the less eccentric
geometries. The issue of truncation errors, raised in the
previous section, is also addressed by the table. For all
five significantly eccentric geometries, the fully de-
veloped flow solutions were repeated with 48 equal 7
intervals used in place of 24. These additional results,
shown in parentheses, indicate negligible truncations
errors for all but the most eccentric geometry, for
which the truncation errors are moderate.

All geometries are listed in order of decreasing y, and
with each group of constant y, in order of decreasing e.
The values of —dP/dZ calculated by [18] as tabulated
on p. 326 of [ 19] and shown in brackets in Table 1 are
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Table 1. Summary of hydrodynamic results

Fully developed

Geometry flow results Total pressure Entrance
£ y ~dP/dZ W oax defect length*
0.9 0.5 2284 2324 2.060 0.313
(22.82)+ (2.310)
[22.844]%
0.5 0.5 35.33 2373 2.143 0.254
(35.33) (2.372)
[35.342]
0.0§ 0.5 47.63 1.508 0.688¢ 0.0116¢
1073 04 47.34 1.516 0.714 0.015
0.0 04 47.36 1.513
0.7 03 29.74 2277 1.959 0.156
(29.72) (2.274)
[29.774]
0.0 0.3 4692 1.522
09 (131 28.81 2.152 1.571 0.106
(28.17) (2.076)
[28.560]
0.5 0.1 36.70 2.149 1.535 0.0897
(36.71) (2.148)
[36.846]
0.0 0.1 44.69 1.567 0.784% 0.0175¢%
All§ 0.0 32.00 2.000 1.259 0.0541 9

* The entrance length is taken to be the value of Z at which W, equals 99%; of its fully developed flow value.
+ All values in parentheses were obtained from the present solution with 48 equal # intervals.

+ All values in brackets were obtained from [18] as tabulated on p. 326 of [19].

§ For concentric annuli all fully developed flow results were obtained from the classical solution.

9 These data are from the work of [20] as tabulated by [21] and can be found on p. 288 of [19].

in very close agreement with the current solution.
Geometries for which either ¢ or y is zero are also
included for purposes of comparison. The fully de-
veloped flow results for these concentric geometries
are from the classical closed-form solution. The total
pressure defect and entrance length data for these
geometries are from the work of [20] as tabulated by
[21] and can be found on p. 288 of [19].

The values of —dP/dZ in both Table 1 and Fig. 9

F16.9. Dimensionless axial pressure gradients for parametric
values of (g, y).

show, as one would expect, that for a fixed y, increasing
& decreases the hydraulic resistance. The values of
W ... in the table, however, have a trend which is not as
predictable. The y = 0.5 and the y = 0.1 results show
that, while a significant increase in W, is observed
between ¢ = 0 and ¢ = 0.5, the values in parentheses
indicate a slight decrease between ¢ = 0.5and ¢ = 0.9.
This phenomenon occurs because in the two ¢ = 0.5
geometries the velocities at the narrowest part of the
annular gap are already very low, and further increases
in ¢ widen the wider part of the gap where flow
velocities are large. Since the average velocity is fixed,
increasing ¢ causes the velocities in the widest part to
decrease and thereby lower W__..

In Fig. 10, the two curves for y = 0.5 tend to be
parallel, as do the two for y = 0.1. Had the analysis of
the entrance region for the (¢ = 0.9,y = 0.1) geometry
been done with a finer mesh, as was possible in the fully
developed flow case, the (¢ = 0.9,y = 0.1) curve would
probably have remained below the (¢ = 0.5,y = 0.1)
curve. This anticipated behavior is consistent with the
twoy = 0.5 curves where the (¢ = 09,y = 0.5)curveis
below the (¢ = 0.5, y = 0.5) curve. Another obser-
vation is that both the figure and the table indicate that
the hydrodynamic entrance length increases with
increasing ¢ or y.



240

12 - -
\
|

ol

0 004 008 0d2 016 020 024

z

FiG. 10. Maximum dimensionless axial velocity for para-
metric values of (g, ).

The pressure defect distributions of Fig. 11 parallel
the flow developments of Fig. 10. This occurs because
the magnitude of the pressure gradient and the wall
shear stresses both decrease and the axial momentum
increases as the flow develops. This parallel behavior
leads one to suspect that, if in Fig. 10 the (¢ = 0.9, y
= 0.1) curve should be below the (s = 0.5,y = 0.1)
curve, the same should also be true in Fig. 11. One
would then conclude that in the table the total pressure
defect for the (¢ = 0.9,y = 0.1) geometry is less than
1.535, rather than 1.571. In either case, the table
indicates that for both y = 0.1 and y = 0.5 the total
pressure defect is almost constant between ¢ = 0.5 and
¢ = 09. For this range of ¢, the table shows a steady
decrease in total pressure defect with decreasing v,
while the concentric geometries display the opposite
trend.

Shah and London [19] have compiled hydrody-
namic data in a form which is practical for use by
designers of compact heat exchangers. As indicated by
the reference, data generated by the present analysis
was transmitted by private communication. From this
data, which included P tabulated as a function of Z,
they provide friction factor tabulated as a function of Z
for the five significantly eccentric geometries of the
present analysis. Since the current nomenclature does
not agree with that of [19], the Appendix compares
essential variables of the two nomenclatures.

6. CONCLUSIONS

The solution of the hydrodynamic entrance region
was obtained from analysis of the proposed hy-
drodynamic model. This model was developed from an
order of magnitude anslysis of the Navier-Stokes
equations and a transverse flow description which was
based on physical arguments. Other transverse flow
descriptions were tested as part of the verification of
the model and were shown to produce similar results.
The solution of the proposed hydrodynamic model for
the geometry (¢ = 0.001,y = 0.4) compared rather well
with the solution of [2] for concentric annuli, and the
results for the rather eccentric geometry (¢ = 0.9,y =
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0.1) compared reasonably well with the solution of
[14] for the circular tube.

Some of the salient aspects of the numerical methods
used to solve the equations of the entrance region
model are: (1) the use of both variable axial step sizes
and variable { intervals in the finite difference grid, (2)
the use of Allen’s method in the finite difference
representation of the axial momentum equation, and
(3) the use of a modified version of the S.O.R. method
in which Aitken’s A? method is used to accelerate the
convergence of the iterates of dP/dZ.

The results of the current analysis quantify some of
the perhaps foreseeable effects of eccentricity on
annular geometries such as longer hydrodynamic
entrance lengths and lower hydraulic resistance with
increasing ¢. The behavior of the total pressure defect,
however, is less predictable. For concentric annuli, it
decreases with increasing y while some of the eccentric
geometries display the opposite trend. Moreover, for
some values of y, the total pressure defect increases
dramatically between ¢ = 0 and ¢ = 0.5, but remains
relatively constant between ¢ = 0.5 and ¢ = 09.

In conclusion, the numerical marching techniques
described by [12] and used by [11] to analyze the
hydrodynamic entrance region of a square duct, have
been extended to the eccentric annulus. In addition to
providing data, the present solution demonstrates
modeling and numerical techniques which are applic-
able to ducts of other configurations.
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APPENDIX
Since Shah and London [19] on pp. 333-336 provide data

generated by the current analysis, a nomenclature com-
parison is provided in Table Al.

Table Al. Nomenclature comparison

Shah and London [19]

Current analysis

pipe, Appl. Sci. Res. 13(A), 224-232 (1964). e* e

D. N. de G. Allen and R. V. Southwell, Relaxation SuppRe —P/(22Z)

methods applied to determine the motion, in two dimen- K(=) PD for fully developed flow

sions, of a viscous fluid past a fixed cylinder, Q. J. Mech. Ly, value of Z at which the maximum W
appl. Math. 8, 129-145 (1955). has reached 999, of its fully de-
Peter Henrici, Elements of Numerical Analysis, pp. 70-74. veloped flow value

John Wiley, New York (1964). r* y

J. R. Westlake, A Handbook of Numerical Matrix In- T W ... for fully developed flow
version and Solution of Linear Equations, pp. 83-84. John ot Z

Wiley, New York (1968).

UNE SOLUTION NUMERIQUE DE L’ECOULEMENT LAMINAIRE EN DEVELOPPEMENT
DANS LES CONDUITES ANNULAIRES EXCENTRIQUES

Résumé—On analyse I’écoulement laminaire incompressible dans des conduites droites dont la section est

annulaire excentrique. Des méthodes numériques sont utilisées pour résoudre un modéle hydrodynamique

approché qui est développé a partir des équations de Navier—Stokes en représentation par coordonnées

bipolaires. Des solutions obtenues se comparent favorablement a celles des modéles alternés et 4 des

solutions publiées pour I'anneau concentrique et le tube circulaire. Des résultats sont présentés pour cing
géométries différentes.

EINE NUMERISCHE LOSUNG FUR DIE LAMINARE ANLAUFSTROMUNG IN
EXZENTRISCHEN RINGKANALEN

Zusammenfassung-—FEs wird die laminare inkompressible Stromung in geraden Kanilen mit exzentrischem
ringférmigem Querschnitt untersucht. Numerische Methoden werden angewandt, um ein hydrodynami-
sches Niherungsmodell zu l6sen, das aus der Bipolarkoordinatendarstellung der Navier-Stokes-Gleich-
ungen entwickelt wurde. Die Losungen des vorgeschlagenen Modells lassen sich gut mit den Losungen zweier
alternativer Modelle und mit verdffentlichten Ldsungen fiir den konzentrischen Ringraum und das
Kreisrohr vergleichen. Fiir fiinf verschiedene Geometrien werden Ergebnisse angegeben.

YHUCJIEHHBIA PACUYET JIAMUHAPHOI'O HEYCTAHOBHMBIIEIOCS TEUEHMUSA
B SKCIIEHTPUUYECKHX KOJIBLIEBBIX KAHAJIAX

AHHOTAUMA — AHAM3HPYETCA JIAMHHAPHOE TEYCHHE HECKHMAEMOH XHIKOCTH B MPAMBIX KaHajax
IKCLEHTPHYECKOTO KOJIbLUEBOro ceveHus. [lna pelieHns npubiuxeHHoll TMAPONMHAMHYECKOH MOIENH,
OCHOBAHHOM Ha BBHIPaXECHHBIX B GHIONAPHBIX KOOpAHHATaX ypaBHeHUAX Hasbe-CTokca, HCNO/L3YIOTCS
YHCJIEHHbIE METOAbI. Pe3yneTaTel peliEHHs XOpOWIO COTNAcylOTCS ¢ AAHHBIMH, MOJyYeHHBIMM C
NIOMOLIBIO JBYX APYTHX MOJENER H ¢ onyOIHKOBAHHBIMH PELICHHAMH LTS KOHUEHTPHYECKOTO KOJbIIE-

BOrO KaHajla M KpYrjiod TpyObl. PesyabTaThl mpencTaBieHsl VTS NATH Pa3IHYHBIX F€OMETPHI.



